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Abstract
We give a constructive classification of the positive energy (lowest weight)
unitary irreducible representations of the D = 6 superconformal algebras
osp(8∗/2N). Our results confirm all but one of the conjectures of Minwalla
(for N = 1, 2) on this classification. Our main tool is the explicit construction
of the norms of the states that have to be checked for positivity. We also give
the reduction of the four exceptional unitary irreducible representations.

PACS numbers: 11.25.Hf, 11.30.Pb

1. Introduction

Recently, superconformal field theories in various dimensions have been attracting increased
interest, in particular, due to their duality to AdS supergravities, cf [1–35] and references
therein. Particularly important are those for D � 6 since in these cases the relevant
superconformal algebras satisfy [36] the Haag–Lopuszanski–Sohnius theorem [37]. This
makes the classification of the unitary irreducible representations (UIRs) of these superalgebras
very important. Until recently such classification was known only for the D = 4
superconformal algebras su(2, 2/N) [38] (for N = 1) [39–42]. Recently, the classification
for D = 3 (for even N), D = 5, and D = 6 (for N = 1, 2) was given in [43], but some of the
results were conjectural and there was not enough detail in order to check these conjectures.
On the other hand the applications of D = 6 unitary irreps require firmer theoretical basis.
Among the many interesting applications we shall mention the analysis of OPEs and 1/2 BPS
operators [18, 29, 35]. In particular, it is important that some general properties of abstract
superconformal field theories can be obtained by using the BPS nature of a certain class
of superconformal primary operators and the model-independent nature of superconformal
OPEs. In the classification of UIRs of superconformal algebras an important role is played by
the representations with ‘quantized’ conformal dimension since in the quantum field theory
framework they correspond to operators with ‘protected’ scaling dimension and therefore
imply ‘non-renormalization theorems’ at the quantum level.
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Motivated by the above we decided to re-examine the list of UIRs of the D = 6
superconformal algebras in detail. More than that, we treat the superalgebras osp(8∗/2N) for
arbitrary N. Thus, we give the final list of UIRs for D = 6. With this we also confirm all but
one of the conjectures of [43] for N = 1, 2. Our main tool is the explicit construction of the
norms. This, on the one hand, enables us to prove the unitarity list and, on the other, enables
us to give the states of the irreps explicitly.

The paper is organized as follows. In section 2 we discuss in detail the lowest weight
representations of the superalgebras osp(8∗/2N). In particular, we define explicitly the norm
squared of the states that has to be checked for positivity. In section 3 we state the main
result (theorem) on the lowest weight (positive energy) UIRs and show explicitly the proof
of necessity. (After the theorem we comment exactly on the results of [43] giving also the
relation between our notations.) We also give the general form of the norms which is enough
for the proof of sufficiency. For part of the states (the fully factorizable ones) we give the
norms explicitly, for the rest (the unfactorizable ones) the formulae are very involved and in
general only recursive. These results are in the generic situation. In section 4 we show the
unitarity at the four exceptional points. We give explicitly the states of zero norm (though not
all for N > 1), which have to be decoupled for the unitary irrep. In section 5 we discuss the
ongoing research.

2. Representations of D = 6 conformal supersymmetry

2.1. The setting

Our basic reference for Lie superalgebras is [44]. The superconformal algebras in D = 6 are
G = osp(8∗/2N). We label their physically relevant representations by the signature:

χ = [d; n1, n2, n3; a1, . . . , aN ] (2.1)

where d is the conformal weight, n1, n2, n3 are non-negative integers which are Dynkin
labels of the finite-dimensional irreps of the D = 6 Lorentz algebra so(5, 1) and a1, . . . , aN

are non-negative integers which are Dynkin labels of the finite-dimensional irreps of the
internal (or R) symmetry algebra usp(2N). The even subalgebra of osp(8∗/2N) is the algebra
so∗(8) ⊕ usp(2N), and so∗(8) ∼= so(6, 2) is the D = 6 conformal algebra.

Our aim is to give a constructive proof for the UIRs of osp(8∗/2N) following the methods
used for the D = 4 superconformal algebras su(2, 2/N), cf [40–42]. The main tool is
an adaptation of the Shapovalov form on the Verma modules V χ over the complexification
GCI = osp(8/2N) of G.

2.2. Verma modules

To introduce Verma modules we use the standard triangular decomposition:

GCI = G+ ⊕ H ⊕ G− (2.2)

where G+,G−, resp., are the subalgebras corresponding to the positive, negative, roots, resp.,
and H denotes the Cartan subalgebra.

We consider lowest weight Verma modules, so that V � ∼=U(G+) ⊗ v0, where U(G+) is
the universal enveloping algebra of G+, and v0 is a lowest weight vector v0 such that:

Zv0 = 0 Z ∈ G−

Hv0 = �(H)v0 H ∈ H (2.3)

Further, for simplicity we omit the sign ⊗, i.e., we write pv0 ∈ V � with p ∈ U(G+).
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The lowest weight � is characterized by its values on the Cartan subalgebra H. In order
to have � corresponding to χ , one can choose a basis in H so as to obtain the entries in the
signature χ by evaluating � on the basis elements of H.

2.3. Root systems

In order to explain how the above is done we recall some facts about osp(8/2N) (denoted
D(4, N) in [44])1. Their root systems are given in terms of ε1 . . . , ε4, δ1 . . . , δN , (εi, εj ) = δij ,
(δı̂, δ̂ ) = −δı̂̂ , (εi, δ̂ ) = 0. The indices i, j, . . . will take values in the set {1, 2, 3, 4}, the
indices ı̂, ̂ , . . . will take values in the set {1, . . . , N}. The even and odd root systems
are [44]:

�0̄ = {±εi ± εj , i < j,±δı̂ ± δ̂ , ı̂ < ̂ ,±2δı̂} �1̄ = {±εi ± δ̂ } (2.4)

(we recall that the signs ± are not correlated)2. We shall use the following simple root
system [44]:

� = {ε1 − ε2, ε2 − ε3, ε3 − ε4, ε4 − δ1, δ1 − δ2, , . . . , δN−1 − δN , 2δN } (2.5a)

or introducing standard notation for the simple roots:

� = {α1, . . . , α4+n}
αj = εj − εj+1 j = 1, 2, 3

α4 = ε4 − δ1 (2.5b)

α4+̂ = δ̂ − δ̂+1 ̂ = 1, . . . , N − 1

α4+N = 2δN

The root α4 = ε4 − δ1 is odd, the other simple roots are even. For future use we also need the
positive root system corresponding to �:

�+
0̄ = {εi ± εj , i < j, δı̂ ± δ̂ , ı̂ < ̂ , 2δı̂} �+

1̄ = {εi ± δ̂ } (2.6)

2.4. Basis of the Cartan subalgebra

Let us denote by HA the generators of the Cartan subalgebra, A = 1, . . . , 4 + N . There is a
standard choice for these generators [44]. Namely, for every even simple root αA we choose
a generator HA so that the following equality is valid for arbitrary µ ∈ H∗:

µ(HA) = (
µ, α∨

A

)
A �= 4 (2.7)

where α∨
A ≡ 2αA/(αA, αA). Because these HA correspond to the simple even roots, which

define the Dynkin labelling, we have the following relation with the signature χ :

�(HA) =
{−nA A = 1, 2, 3
−aA−4 A = 5, . . . , N + 4.

(2.8)

The minus signs are related to the fact that we work with lowest weight Verma modules
(instead of the highest weight modules used in [44]) and to Verma module reducibility w.r.t.
the roots αA (this is explained in detail in [41]).

We have not fixed only the generator H4. The standard choice [44] is a generator
corresponding to the odd simple root α4, but we can take any element of the Cartan subalgebra
which is not a linear combination of the established already N + 3 generators HA. Our choice
1 These initial facts can be given for osp(2M/2N) = D(M,N) in a very similar fashion.
2 The roots ±εi ± εj provide the root system of so(8;C), the roots ±δi ± δj and ±2δi provide the root system of
sp(2N ;C).
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is to take the generator H4 which corresponds to the root ε3 + ε4 and which together with
α1, α2, α3 provides the root system of so(8; C).3 The value �(H4) cannot be a non-positive
integer like the other �(HA) given in (2.8), since then we would obtain finite-dimensional
representations of so(8, C) [45], and thus, non-unitary representations of so(6, 2). In fact,
unitarity w.r.t. so(6, 2) would already require that �(H4) is a non-negative number related to
the physically relevant conformal weight d, which is related to the eigenvalue of the conformal
Hamiltonian. That is why the lowest weight UIRs are also called positive energy UIRs.
Here we omit the analysis by which it turns out that �(H4) differs from d by the quantity
(n1 + 2n2 + n3)/2 (which is the value of the conformal Hamiltonian of the algebra so(5, 1)

mentioned above). Thus, we set

�(H4) = d + 1
2 (n1 + 2n2 + n3) = (�, (ε3 + ε4)

∨) = (�, ε3 + ε4). (2.9)

This choice is consistent with that in [43], and the usage in [18].
Having in hand the values of � on the basis we can recover them for any element of

H and H∗. In particular, for the values on the elementary functionals we have from (2.8)
and (2.9):

(�, ε1) = 1
2d − 1

4 (3n1 + 2n2 + n3)

(�, ε2) = 1
2d + 1

4 (n1 − 2n2 − n3)

(�, ε3) = 1
2d + 1

4 (n1 + 2n2 − n3) (2.10)

(�, ε4) = 1
2d + 1

4 (n1 + 2n2 + 3n3)

(�, δ̂ ) = â + â+1 + · · · + αN ≡ r̂

Using (2.8 and (2.9) one can easily write � = �(χ) as a linear combination of the simple
roots or of the elementary functionals εj , δ̂ , but this is not necessary in what follows.

2.5. Reducibility of Verma modules

Having established the relation between χ and � we turn our attention to the question of
unitarity. The conditions of unitarity are intimately related with the conditions for reducibility
of the Verma modules w.r.t. to the odd positive roots. A Verma module V � is reducible w.r.t.
the odd positive root γ iff the following holds [44]:

(� − ρ, γ ) = 0 γ ∈ �+
1̄ (2.11)

where ρ ∈ H∗ is the very important in representation theory element given by the difference
of the half-sums ρ0̄, ρ1̄ of the even, odd, resp., positive roots (cf (2.6)):

ρ
.= ρ0̄ − ρ1̄

ρ0̄ = 3ε1 + 2ε2 + ε3 + Nδ1 + (N − 1)δ2 + · · · + 2δN−1 + δN

ρ1̄ = N(ε1 + ε2 + ε3 + ε4).

(2.12)

To make (2.11) explicit we need the values of � and ρ on the positive odd roots εi ± δj

(which we obtain from (2.10)):

(�, ε1 ± δ̂ ) = 1
2d − 1

4 (3n1 + 2n2 + n3) ± r̂ (2.13a)

(�, ε2 ± δ̂ ) = 1
2d + 1

4 (n1 − 2n2 − n3) ± r̂ (2.13b)

(�, ε3 ± δ̂ ) = 1
2d + 1

4 (n1 + 2n2 − n3) ± r̂ (2.13c)

(�, ε4 ± δ̂ ) = 1
2d + 1

4 (n1 + 2n2 + 3n3) ± r̂ (2.13d )

(ρ, εi ± δ̂ ) = 4 − i − N ∓ (N − ̂ + 1). (2.14)

3 However, in the osp(8/2N) root system we have: ε3 + ε4 = α3 + 2α4 + · · · + 2αN+3 + αN+4.
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Consequently we find that the Verma module V �(χ) is reducible if the conformal weight
takes one of the following 8N values d±

ij labelled by the respective odd root εi ± δ̂ :

d = d±
1̂

.= 1
2 (3n1 + 2n2 + n3) + 2(3 − N) ∓ 2(r̂ + N − ̂ + 1) (2.15a)

d = d±
2̂

.= 1
2 (n3 + 2n2 − n1) + 2(2 − N) ∓ 2(r̂ + N − ̂ + 1) (2.15b)

d = d±
3̂

.= 1
2 (n3 − 2n2 − n1) + 2(1 − N) ∓ 2(r̂ + N − ̂ + 1) (2.15c)

d = d±
4̂

.= − 1
2 (n1 + 2n2 + 3n3) − 2N ∓ 2(r̂ + N − ̂ + 1). (2.15d )

For future use we note the following relations:

1
2

(
d−

î − d−
k�̂

) = ni + · · · + nk−1 + k − i + �̂ − ̂ + â + · · · + a�̂−1 > 0

i � k ̂ � �̂ î �= k�̂ (2.16a)
1
2

(
d+

î − d+
k�̂

) = ni + · · · + nk−1 + k − i + ̂ − �̂ + a�̂ + · · · + â−1 > 0

i � k ̂ � �̂ î �= k�̂ (2.16b)
1
2

(
d−

î − d+
k�̂

) = ni + · · · + nk−1 + k − i + 2N − ̂ − �̂ + r̂ + r�̂ + 2 > 0 i � k (2.16c)

which introduce some partial ordering between the quantities d±
î of which the essential would

turn out to be the following:

d−
11 > d−

21 > d−
31 > d−

41. (2.17)

The four values in (2.17) play a special role in the unitarity formulation. The value d−
11 is the

biggest among all d±
ij ; it is called ‘the first reduction point’ in [38].

2.6. Shapovalov form and unitarity

The Shapovalov form is a bilinear C-valued form on Verma modules [46]. We also need the
involutive antiautomorphism ω of U(G+) which will provide the real form we are interested
in. Thus, an adaptation of the Shapovalov form suitable for our purposes is defined (as in [42])
as follows:

(u, u′) = (pv0, p
′v0) ≡ (v0, ω(p)p′v0) = (ω(p′)pv0, v0)

(2.18)
u = pv0 u′ = p′v0 p,p′ ∈ U(G+) u, u′ ∈ V �

supplemented by the normalization condition (v0, v0) = 1. The norms squared of the states
would be denoted by

‖u‖2 ≡ (u, u). (2.19)

We suppose that we consider representations which are unitary when restricted to the even
part G+

0̄ . This is justified a posteriori since (as in the D = 4 case [40, 42]) the unitary bounds
of the even part are weaker than the supersymmetric ones [47]. Thus, as in [40, 42] we shall
factorize the even part and we shall consider only the states created by the action of the odd
generators, i.e. F� = (

U(G+)
/
U
(G+

0̄

))
v0. We introduce notation X+

î for the odd generator
corresponding to the positive root εi − δ̂ , and Y +

î shall correspond to εi + δ̂ . Since the odd
generators are Grassmann there are only 28N states in F and choosing an ordering we give
these states explicitly as follows:

ε̄ν̄ =
(

4∏
i=1

(
Y +

i1

)εi1

)
· · ·
(

4∏
i=1

(
Y +

iN

)εiN

)(
4∏

i=1

(
X+

iN

)νiN

)
· · ·
(

4∏
i=1

(
X+

i1

)νi1

)
v0

εî , νî = 0, 1 (2.20)
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where ε̄, ν̄, denote the set of all εî , νî , resp. For future use we give the notation for the
number of Ys and Xs:

ε ≡
4∑

i=1

N∑
̂=1

εî ν ≡
4∑

i=1

N∑
̂=1

νî (2.21)

and through them for the level �:

� (ε̄ν̄) = ε + ν. (2.22)

2.7. Explicit realization of the basis of osp(8/2N)

To proceed further we need the explicit realization of the generators of osp(8/2N). It is
obtained from the standard one of [44] by applying a unitary transformation done in order to
bring the Cartan subalgebra in diagonal form. The matrices are (8 + 2N) × (8 + 2N) and are
in standard supermatrix form, i.e. the even are of the form(∗ 0

0 ∗
)

and the odd of the form(
0 ∗
∗ 0

)
.

The description is done very conveniently in terms of the matrices EAB ∈ gl(8/2N, C),

A,B = 1, . . . , 8 + 2N . Fix A,B, then the matrix EAB has only non-zero entry, equal to 1, at
the intersection of the Ath row and Bth column.

Then the generators HA are given by

Hj = Ejj − Ej+1,j+1 − Ej+4,j+4 + Ej+5,j+5 j = 1, 2, 3

H4 = E33 + E44 − E77 − E88 (2.23)
H4+̂ = E8+̂ ,8+̂ − E9+̂ ,9+̂ − E8+N+̂ ,8+N+̂ + E9+N+̂ ,9+N+̂ ̂ = 1, . . . , N − 1

H4+N = E8+N,8+N − E8+2N,8+2N

the basis of G+—enumerated by the corresponding roots—is

L+
ij = Eij − E4+j,4+i roots : εi − εj i < j

P +
ij = Ei,4+j − Ej,4+i roots : εi + εj i < j

T +
ı̂̂ = E8+ı̂,8+̂ − E8+N+̂ ,8+N+ı̂ roots : δı̂ − δ̂ ı̂ < ̂

R+
ı̂̂ = E8+ı̂,8+N+̂ + E8+̂ ,8+N+ı̂ roots : δı̂ + δ̂ ı̂ < ̂

R+
ı̂ = E8+ı̂,8+N+ı̂ roots : 2δı̂

X+
î = Ei,8+̂ + E8+N+̂ ,4+i roots : εi − δ̂

Y +
î = Ei,8+N+̂ − E8+̂ ,4+i roots : εi + δ̂

(2.24)

while the basis of G− is

L−
ij = Eij − E4+j,4+i roots : εi − εj i > j

P−
ij = E4+j,i − E4+i,j roots : −(εi + εj ) i < j

T −
ı̂̂ = E8+ı̂,8+̂ − E8+N+̂ ,8+N+ı̂ roots : δı̂ − δ̂ ı̂ > ̂

R−
ı̂̂ = E8+N+ı̂,8+̂ + E8+N+̂ ,8+ı̂ roots : −(δı̂ + δ̂ ) ı̂ < ̂

R−
ı̂ = E8+N+ı̂,8+ı̂ roots : −2δı̂

X−
î = E4+ı̂,8+N+̂ − E8+̂ ,i roots : −εi + δ̂

Y −
î = E4+i,8+̂ + E8+N+̂ ,i roots : −(εi + δ̂ ).

(2.25)
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From the explicit matrix realization above one easily obtains all commutation relations.
We shall write down only some more important ones:[
X+

î , X
−
î

]
+ = −Eii + E4+i,4+i − E8+̂ ,8+̂ + E8+N+̂ ,8+N+̂ = −Ĥ i − H̃ ̂ (2.26a)[

Y +
î , Y

−
î

]
+ = Eii − E4+i,4+i − E8+̂ ,8+̂ + E8+N+̂ ,8+N+̂ = Ĥ i − H̃ ̂ (2.26b)

where we have introduced notation for an alternative basis of H which actually is used in the
calculation of scalar products

Ĥ i ≡ Eii − E4+i,4+i i = 1, . . . , 4 (2.26c)

H̃ ̂ ≡ E8+̂ ,8+̂ − E8+N+̂ ,8+N+̂ ̂ = 1, . . . , N. (2.26d )

In particular, we shall use continuously[
Ĥ k,X

+
î

] = δkiX
+
î (2.27a)[

Ĥ k, Y
+
î

] = δkiY
+
î (2.27b)[

H̃ �̂, X
+
î

] = −δ�̂̂X
+
î (2.27c)[

H̃ �̂, Y
+
î

] = δ�̂̂ Y
+
î . (2.27d )

We also give the generators ĤA in terms of HA

Ĥ 1 = H1 + H2 + 1
2 (H4 + H3)

Ĥ 2 = H2 + 1
2 (H4 + H3)

Ĥ 3 = 1
2 (H4 + H3) (2.28)

Ĥ 4 = 1
2 (H4 − H3)

H̃ ̂ = H4+̂ + · · · + H4+N ̂ = 1, . . . , N.

3. Unitarity

In this section we state our main result (in the theorem) on the lowest weight (positive energy)
UIRs and give the proof of necessity in general and proof of sufficiency at generic points (the
reduction points are dealt with in the next section).

3.1. Calculation of some norms

In this subsection we show how to use the form (2.18) to calculate the norms of the states
from F .

We first need explicitly the conjugation ω on the odd generators:

ω
(
X+

î

) = −X−
î ω

(
Y +

î

) = Y −
î . (3.1)

(In matrix notation this would follow from: ω(Ei,8+̂ ) = E8+̂ ,i , ω(Ei+4,8+̂ ) = −E8+̂ ,i+4.)
We give now explicitly the norms of the one-particle states from F introducing also

notation for future use:

xî ≡ ∥∥X+
î v0

∥∥2 = (
X+

î v0,X
+
î v0

) = −(v0,X
−
î X

+
î v0

)
= (v0, (Ĥ i + H̃ ̂ )v0) = �(Ĥ i + H̃ ̂ ) (3.2a)
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yî ≡ ∥∥Y +
î v0

∥∥2 = (
Y +

î v0, Y
+
î v0

) = (
v0, Y

−
î Y +

î v0
)

= (v0, (Ĥ i − H̃ ̂ )v0) = �(Ĥ i − H̃ ̂ ). (3.2b)

Using (2.28), (2.8) and (2.9) we get

xî = (�, εi − δ̂ ) = 1
2

(
d − d−

î

)
+ 5 − i − ̂ (3.3a)

yî = (�, εi + δ̂ ) = 1
2

(
d − d+

î

)
+ 3 − i + ̂ − 2N. (3.3b)

And we note:

xi+1,̂ − xî = 1
2

(
d−

î − d−
i+1,̂

)− 1 = ni � 0 (3.4a)

xi,̂+1 − xî = 1
2

(
d−

î − d−
i,̂+1

)− 1 = â � 0 (3.4b)

yi+1,̂ − yî = 1
2

(
d+

î − d+
i+1,̂

)− 1 = ni � 0 (3.4c)

yî − yi,̂+1 = 1
2

(
d+

i,̂+1 − d+
î

)− 1 = â � 0 (3.4d )

yi,�̂ − xî = 1
2

(
d−

î − d+
i,�̂

)
+ ̂ + �̂ − 2N − 2 = r�̂ + r̂ � 0. (3.4e)

Thus, x11 is the smallest among all xî and yî .

3.2. Statement of main result and proof of necessity

In this subsection we state our main result in the theorem and give the proof of necessity via
two propositions (1 and 2).

First we give the norms which actually determine all of the unitarity conditions. In order
to simplify the exposition we shall also use the notation

X+
j ≡ X+

j1 xj ≡ xj1. (3.5)

We note in these terms a subset of (3.4a)

xi+1 − xi = ni � 0. (3.4a′)

Next we calculate∥∥X+
j X

+
k v0

∥∥2 = (xj − 1)xk j < k (3.6a)∥∥X+
j X

+
k X+

� v0

∥∥2 = (xj − 2)(xk − 1)x� j < k < � (3.6b)∥∥X+
1X+

2 X+
3X+

4 v0

∥∥2 = (x1 − 3)(x2 − 2)(x3 − 1)x4. (3.6c)

The norms (3.2a) and (3.6) are all strictly positive iff xj > 4 − j, j = 1, 2, 3, 4, which are
all fulfilled if x1 > 3, since x1 is the smallest among the xj . Thus, these norms are strictly
positive iff

x1 > 3 ⇐⇒ d > d−
11. (3.7)

It turns out that this restriction is sufficient to guarantee unitarity of the whole representation.
This is not unexpected: in all cases studied so far it was always so that if d is bigger than the
first odd reduction point then the module is unitary.

Of course, the condition (3.7) is not necessary for unitarity. On the experience so far it is
expected that when d is equal to some of the reducibility values then unitarity is also possible,
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though in these cases there would be some conditions on the representation parameters, and
one has to factor out the resulting zero-norm states. Now we can formulate the main result:

Theorem. All positive energy unitary irreducible representations of the conformal
superalgebra osp(8∗/2N) characterized by the signature χ in (2.1) are obtained for real d
and are given in the following list:

d � d−
11 = 1

2 (3n1 + 2n2 + n3) + 2r1 + 6 no restrictions on nj (3.8a)

d = d−
21 = 1

2 (n3 + 2n2) + 2r1 + 4 n1 = 0 (3.8b)
d = d−

31 = 1
2n3 + 2r1 + 2 n1 = n2 = 0 (3.8c)

d = d−
41 = 2r1 n1 = n2 = n3 = 0. (3.8d )

Remark 1. For N = 1, 2 the theorem was conjectured by Minwalla [43], except that he
conjectured unitarity also for the open interval (d−

31, d
−
21) with conditions on nj as in (3.8c).

We should note that this conjecture could be reproduced neither by methods of conformal field
theory [18], nor by the oscillator method [48] (cf [43]), and thus was in doubt. To compare with
the notations of [43] one should use the following substitutions: n1 = h2 − h3, n2 = h1 − h2,
n3 = h2 + h3, r1 = k, and hj are all integer or all half-integer. The fact that nj � 0
for j = 1, 2, 3 translates into: h1 � h2 � |h3|, i.e. the parameters hj are of the type
often used for representations of so(2N) (though usually for N � 4). Note also that the
statement of the theorem is arranged in [43] according to the possible values of ni first and
then the possible values of d. To compare with the notation of [18] we use the substitution
(n1, n2, n3) → (J3, J2, J1). Some UIRs at the four exceptional points d−

i1 were constructed in
[49] by the oscillator method (some of these were identified with Cartan-type signatures like
(2.1) in, e.g., [43, 29]). �

The proof of the theorem requires showing that there is unitarity as claimed, i.e. that the
conditions are sufficient, and that there is no unitarity otherwise, i.e. that the conditions are
necessary. For the sufficiency we need all norms, but for the necessity part we only need
knowledge of a few norms. We give the necessity part in two propositions.

Proposition 1. There is no unitarity in any of the open intervals: (d−
j+1,1, d

−
j1), j = 1, 2, 3,

and if d < d−
41.

Proof.

• Consider d in the open interval (d−
21, d

−
11), which means that 3 > x1 > 2 − n1. Consider

the norm (3.6c) and using (3.4a) express all xi in terms of x1. We have:

(x1 − 3)(x2 − 2)(x3 − 1)x4 = (x1 − 3)(x1 + n1 − 2)(x1 + n1 + n2 − 1)(x1 + n1 + n2 + n3)

(3.9)

The first term is strictly negative while the other three terms are strictly positive,
independent of the values of ni . Thus, the norm (3.6c) is negative in the open interval
(d−

21, d
−
11).

• Consider d in the open interval (d−
31, d

−
21), which means that 2 > x1 + n1 > 1 − n2.

Consider the norm (3.6b) for (j, k, �) = (1, 3, 4) and using (3.4a) express all xi in terms
of x1. We have

(x1 − 2)(x3 − 1)x4 = (x1 − 2)(x1 + n1 + n2 − 1)(x1 + n1 + n2 + n3) (3.10)
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The first term is strictly negative while the other two terms are strictly positive, independent
of the values of ni . Thus, the norm of the state X+

1 X+
3X+

4 v0 is negative in the open interval
(d−

32, d
−
21).

• Consider d in the open interval (d−
41, d

−
31), which means that 1 > x1 + n1 + n2 > −n3.

Consider the norm (3.6a) for (j, k) = (1, 4) and using (3.4a) express all xi in terms of
x1. We have

(x1 − 1)x4 = (x1 − 1)(x1 + n1 + n2 + n3). (3.11)

The first term is strictly negative while the second is strictly positive, independent of the
values of ni . Thus, the norm of the state X+

1X+
4 v0 is negative in the open interval (d−

31, d
−
21).

• Consider d in the infinite open interval d < d−
41. Then the norm of X+

41v0 is negative using
(3.3a):

x4 = x41 = 1
2 (d − d−

41) < 0.

Thus, the proposition is proved.
�

Thus, we have shown the exclusion of the open intervals in the statement of the theorem. The
necessity of the restrictions on ni in cases b, c, d of the theorem remains to be shown.

Proposition 2. There is no unitarity in the following cases:

d = d−
21 n1 > 0 (3.8b′)

d = d−
31 n1 + n2 > 0 (3.8c′)

d = d−
41 n1 + n2 + n3 > 0. (3.8d′)

Proof.

• Let d = d−
21 which means x2 = 2 and x1 = 2−n1. Consider again the norm of X+

1X+
3 X+

4v0

and substitute the value of x1 in (3.10) to get

(x1 − 2)(x3 − 1)x4 = (−n1)(1 + n2)(2 + n2 + n3). (3.12)

This norm is negative if n1 > 0.
• Let d = d−

31 which means x3 = 1 and x1 = 1 − n1 − n2. Consider again the norm of
X+

1X+
4 v0 and substitute the value of x1 in (3.11) to get

(x1 − 1)x4 = (−n1 − n2)(1 + n3). (3.13)

This norm is negative if n1 + n2 > 0.
• Let d = d−

41 which means x4 = 0 and x1 = −n1 − n2 − n3. But the latter is the norm of
X+

1v0 and it is negative if n1 + n2 + n3 > 0.

Thus, the proposition is proved. �

With this we have shown that the conditions of the theorem are necessary.
The proof of sufficiency is postponed for the next subsection.

Remark 2. The reader may wonder why the other reducibility points are not playing such an
important role as the quartet appearing in the theorem.

First we note that the analogous calculations involving other quartets of operators: X+
î

(̂ �= 1 fixed, i = 1, 2, 3, 4) or Y +
î (̂ fixed, i = 1, 2, 3, 4) give the same results as (3.6) with
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just replacing xi → xî or xi → yî . This brings the conditions xî > 4 − i or yî > 4 − i

which all follow from x1 > 3 because of (3.4). This is related to the fact that d−
11 is the largest

reduction point.
Further, we may look for the analogue of proposition 1 and we can prove the same results

involving d−
î (̂ �= 1 fixed), or d+

î (̂ fixed). However, these results may be relevant only
if the exceptional points d−

21, d−
31, d−

41, together with the respective conditions, would happen
to be in some of the open intervals defined by some other quartet, which would prove their
non-unitarity. The reason that this does not happen is the following.

Let n1 = 0. Then one can easily see that d−
11 and d−

21 are the two largest reduction points
(for N = 1, 2 cf [43]), i.e. all other reduction points are smaller, and thus, d−

21 cannot be in
any open interval defined by some other quartet.

Analogously, for n1 = n2 = 0 one can easily see that d−
11, d−

21 and d−
31 are the three largest

reduction points (for N = 1, 2 cf [43]), and so d−
31 cannot be in any open interval defined by

some other quartet. Finally, for n1 = n2 = n3 = 0 the points d−
11, d−

21, d−
31 and d−

41 are the four
largest reduction points (for N = 1, 2 cf [43]), and d−

41 cannot be in any open interval defined
by some other quartet. �

3.3. General form of the norms and unitarity in the generic case

In this subsection we give the proof of sufficiency of the theorem in the generic case. This
requires the general form of the norms. The states are divided into classes and the norms are
given for the different cases in propositions 3–7. At the end we finish the proof of sufficiency
utilizing these propositions.

To present the general formulae for the norms we first we divide the states into factorizable
and unfactorizable as follows. Let the first generator in ε̄ν̄ be Y +

î , i.e. ε̄ν̄ = Y +
î · · · v0. Then

ε̄ν̄ is called factorizable if the following three statements hold:

εk̂ εi�̂ = 0 or εk�̂ = 1 for all pairs (k, �̂) such that : k > i, �̂ > ̂ (3.14a)

εk̂ νi�̂ = 0 or νk�̂ = 1 for all k > ı, and all �̂ (3.14b)

εi�̂νj�̂ = 0 or νĵ = 1 for all �̂ > ̂ , and all j (3.14c)

If the first generator in ε̄ν̄ is X+
î , so that ε̄ = 0, then 0,ν̄ is called factorizable if the following

statement holds:

νĵ νi�̂ = 0 or νj�̂ = 1 for all pairs (j, �̂) such that : j > i, �̂ < ̂ (3.15)

Our first result on the norms is

Proposition 3. For factorizable states starting with X+
î the following relation holds:

‖0,ν̄‖2 = (xî + ν̃î )‖0,ν̄′ ‖2

ν̃î = νi,̂−1 + · · · + νi,1 − νi+1,̂ − · · · − ν4,̂ (3.16)

ν ′
j �̂

= νj�̂ − δjiδ�̂̂ .

For factorizable states starting with Y +
î the following relation holds:

‖ε̄,ν̄‖2 = (yî + ε̃î + νi + ν̂̂ )‖ε̄′ν̄‖2

ε̃î = εi,̂+1 + · · · + εi,N − εi+1,̂ − · · · − ε4,̂
(3.17)

νi = νi,1 + · · · + νi,N , ν̂̂ = ν1,̂ + · · · + ν4,̂

ε′
j �̂

= εj�̂ − δjiδ�̂̂ .
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Proof. We start with (3.16). Clearly, 0,ν̄ = X+
î0,ν̄′ . Then the norm squared is

‖0,ν̄‖2 = (
X+

î0,ν̄′ ,X+
î 0,ν̄′

) = −(0,ν̄′ ,X−
îX

+
î0,ν̄′

)
(3.18a)

= −(0,ν̄′ ,
(− X+

îX
−
î − Ĥ i − H̃ ̂

)
0,ν̄′

)
(3.18b)

= (0,ν̄′ , (Ĥ i + H̃ ̂ )0,ν̄′) (3.18c)

= (�(Ĥ i + H̃ ̂ ) + ν̃î )(0,ν̄′ ,0,ν̄′ ) (3.18d )

= (xî + ν̃î )‖0,ν̄′ ‖2. (3.18e)

Note that the term X+
îX

−
î in (3.18b) gives no contribution: due to conditions (3.15) the operator

X−
î anticommutes with the operators in 0,ν̄′ or produces terms such as:

(
X+

j �̂

)2 = 0, thus it

reaches v0 without additional terms. Moving the operator Ĥ i + H̃ ̂ through 0,ν̄′ produces the
addition ν̃î —the terms νi,̂−1 + · · · + νi,1 are due to (2.27a), and the terms −νi+1,̂ − · · · − ν4,̂

are due to (2.27c). Analogously, we consider (3.17). Clearly, ε̄,ν̄ = Y +
î ε̄′,ν̄ . The norm

squared is

‖ε̄ν̄‖2 = (
Y +

îε̄′,ν̄ , Y
+
î ε̄′,ν̄

) = (
ε̄′,ν̄ , Y

−
î Y +

îε̄′,ν̄
)

(3.19a)

= (
ε̄′,ν̄ ,

(− Y +
î Y

−
î + Ĥ i − H̃ ̂

)
ε̄′,ν̄

)
(3.19b)

= (ε̄′,ν̄ , (Ĥ i − H̃ ̂ )ε̄′,ν̄ ) (3.19c)

= (�(Ĥ i − H̃ ̂ ) + ε̃î + νi + ν̂̂ )(ε̄′,ν̄ , ε̄′,ν̄ ) (3.19d )

= (yî + ε̃î + νi + ν̂̂ )‖ε̄′,ν̄‖2. (3.19e)

Note that to produce the additional terms ε̃î + νi + ν̂̂ we need all of (2.27). �

The states ε̄′ν̄ and 0,ν̄′ may still be factorizable and so on. The state 0,ν̄ is called fully
factorizable if the process of factorization can be repeated ν times. The state ε̄,ν̄ is called
fully factorizable if the process of factorization can be repeated ε times and the resulting state
0,ν̄ is fully factorizable.

Our first main result on the norms is

Proposition 4. The norm of a fully factorizable state ε̄ν̄ is given by the following formula:

‖ε̄ν̄‖2 = Nε̄ν̄ (3.20)

where

Nε̄ν̄ =
4∏

i=1

N∏
̂=1

(yî + ε̃î + νi + ν̃̂ )
εî (xî + ν̃î )

νî (3.21)

Proof. By direct iteration of (3.17) and (3.16). �

Naturally, the norms in (3.6) are special cases of (3.20).
Note that the norm squared of a state is a polynomial in d of degree the level � of the state.
We shall now discuss states which are not fully factorizable. It is enough to consider

unfactorizable states, since if a state is factorizable then we apply (3.17) or (3.16) one or more
times until we are left with the norm squared of an unfactorizable state. We shall have two
propositions, the first of which is
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Proposition 5. Let 0,ν̄ be an unfactorizable state starting with the generator X+
î . This

means that there are one or more pairs of integers (k, �̂) so that (3.15) is violated. Let us
enumerate the pairs violating (3.15) as

(km, �̂m,n), i < k1 < · · · < kp, ̂ > �̂m,1 > · · · > �̂m,q(m) (3.22)

so that the following holds:

νkm,̂ = νi,�̂m,n
= 1 and νkm,�̂m,n

= 0. (3.23)

Then the norm of 0,ν̄ is given by the following formula:

‖0,ν̄‖2 = (xi,̂ + ν̃i,̂ )‖0,ν̄′ ‖2 −
p∑

m=1

q(m)∑
n=1

Rm,n
0,ν̄ (3.24a)

R1,n
0,ν̄ =

(
n−1∏
s=1

(
xi,�̂1,s

+ νi − ν̂�̂1,s
− s + 1

)) ‖0,ν̄1,n‖2 (3.24b)

ν
1,n
î = ν

1,n
k1,̂

= ν
1,n

i,�̂1,1
= · · · = ν

1,n

i,�̂1,n
= 0 ν

1,n

k1,�̂1,n
= 1 (the rest of ν1,n

k,�̂
are as νk,�̂)

R2,n
0,ν̄ = (

xk1,̂ + νk1 − ν̂̂

)(n−1∏
s=1

(
xi,�̂2,s

+ νi − ν̂�̂2,s
− s + 1

)) ‖0,ν̄2,n‖2 (3.24c)

ν
2,n
î = ν

2,n
k1,̂

= ν
2,n
k2,̂

= ν
2,n

i,�̂2,1
= · · · = ν

2,n

i,�̂2,n
= 0 ν

2,n

k2,�̂2,n
= 1

(the rest of ν2,n

k,�̂
are as νk,�̂)

R3,n
0,ν̄ = (

xk1,̂ + νk1 − ν̂̂

) (
xk2,̂ + νk2 − ν̂̂ + 1

)(n−1∏
s=1

(
xi,�̂3,s

+ νi − ν̂�̂3,s
− s + 1

)) ‖0,ν̄3,n‖2

(3.24d )

ν
3,n
î = ν

3,n
k1,̂

= ν
3,n
k2,̂

= ν
3,n
k3,̂

= ν
3,n

i,�̂3,1
= · · · = ν

3,n

i,�̂3,n
= 0 ν

3,n

k3,�̂3,n
= 1

(the rest of ν3,n

k,�̂
are as νk,�̂)

Proof. The reason for the counterterms is in the transmutation of generators which happens
for every pair from (3.22), (3.23) by the following mechanism. Let us take one such pair for
fixed (m, n). This means that 0,ν̄ contains the operators

0,ν̄ = X+
î . . . X+

km,̂ . . . X+
i,�̂m,n

. . . v0 (3.25a)

and its norm squared is

‖0,ν̄‖2 = (
X+

î . . . X+
km,̂ . . . X+

i,�̂m,n
. . . v0,X

+
î . . . X+

km,̂ . . . X+
i,�̂m,n

. . . v0
)

= (−1)ν
(
v0, . . . X

−
i,�̂m,n

. . . X−
km,̂ . . . X−

îX
+
î . . . X+

km,̂ . . . X+
i,�̂m,n

. . . v0
)
. (3.25b)

Further we shall give only the term of ‖0,ν̄‖2 which will turn into the discussed counterterm

‖0,ν̄‖2 ≈ (−1)ν+1
(
v0, . . . X

−
i,�̂m,n

. . . X−
km,̂ . . . X+

îX
−
î . . . X+

km,̂ . . . X+
i,�̂m,n

. . . v0
)

≈ (−1)ν+1
(
v0, . . . X

−
i,�̂m,n

. . . X−
km,̂X

+
î . . . X−

îX
+
km,̂ . . . X+

i,�̂m,n
. . . v0

)
= (−1)ν+1

(
v0, . . . X

−
i,�̂m,n

. . .
(−X+

îX
−
km,̂ − L+

i,km

) · · ·
× · · · (−X+

km,̂X
−
î − L−

km,i

)
. . . X+

i,�̂m,n
. . . v0

)
(3.25c)

≈ (−1)ν+1(v0, . . . X
−
i,�̂m,n

L+
i,km

. . . L−
km,iX

+
i,�̂m,n

. . . v0
)

(3.25d )



7092 V K Dobrev

= (−1)ν+1(v0, . . .
(
L+

i,km
X−

i,�̂m,n
+ X−

km,�̂m,n

)
. . .

× . . .
(
X+

i,�̂m,n
L−

km,i + X+
km,�̂m,n

)
. . . v0

)
(3.25e)

≈ (−1)ν+1
(
v0, . . . X

−
km,�̂m,n

. . . X+
km,�̂m,n

. . . v0

)
(3.25f )

= −
∥∥∥. . . X+

km,�̂m,n
. . . v0

∥∥∥2
. (3.25g)

Thus, we have shown that the norm squared of 0,ν̄ contains a term which is the norm squared
(with sign ‘minus’—hence the word ‘counterterm’) of a state obtained from 0,ν̄ by replacing
the operators X+

î , X+
km,̂ and X+

i,�̂m,n
by the operator X+

km,�̂m,n
. Note that the latter was not

present in 0,ν̄ due to the condition νkm,�̂m,n
= 0 in (3.23). Note also that the counterterm

state is of level ν − 2 which brings the factor (−1)ν−2 in the passage from (3.25f ) to (3.25g)
which together with the factor (−1)ν+1 results in the overall minus sign in (3.25g). The
described transmutation explains totally only the first counterterm in (3.24b) obtained for
(m, n) = (1, 1). The other counterterms get additional contributions, in particular, from terms
which we neglected in (3.25). For the rest of the counterterms with (m = 1, n > 1) this
affects the contributions of the operators X+

i,�̂1,s
, s < n. Analogously, for m > 1 this affects

in addition the operators X+
ks ,̂

, s < m. In all cases, every counterterm is a polynomial in d
of degree ν − 2. The overall restrictions on the number of counterterms only remains to be
explained. Since i < 4, ̂ > 1, it follows that p � 4 − i � 3, q(m) � ̂ − 1. �

Our next main result on the norms is

Proposition 6. Let ε̄ν̄ be a unfactorizable state starting with the generator Y +
î . This means

that there are one or more pairs of integers (k, �̂) so that (3.14) is violated. Let us enumerate
the pairs violating (3.14a) as

(jm, ̂m,n) i < j1 < · · · < jp ̂ < ̂m,1 < · · · < ̂m,q(m) (3.26)

(note that i < 4, ̂ < N , p � 4 − i � 3, q(m) � N − ̂ ) so that the following holds:

εjm,̂ = εi,̂m,n
= 1 and εjm,̂m,n

= 0 (3.27)

Let us enumerate the pairs violating (3.14b) as

(km, k̂m,n) i < k1 < · · · < kp′ k̂m,1 > · · · > k̂m,q ′(m) (3.28)

(note that i < 4, p′ � 4 − i � 3, q ′(m) � N) so that the following holds:

εkm,̂ = νi,k̂m,n
= 1 and νkm,k̂m,n

= 0 (3.29)

Let us enumerate the pairs violating (3.14c) as

(�m, �̂m,n) �1 < · · · < �p′′ ̂ < �̂m,1 < · · · < �̂m,q ′′(m) (3.30)

(note that ̂ < N , p′′ � 4, q ′′(m) � N − ̂ ) so that the following holds:

εi,�̂m,n
= ν�m,�̂m,n

= 1 and ν�m,̂ = 0. (3.31)

Then the norm is given by the following formula:

‖ε̄ν̄‖2 = (yi,̂ + ε̃i,̂ + νi + ν̃̂ )‖ε̄′ν̄‖2 −
p∑

m=1

q(m)∑
n=1

Rm,n
ε̄,ν̄ −

p′∑
m=1

q ′(m)∑
n=1

R′m,n

ε̄,ν̄ −
p′′∑

m=1

q ′′(m)∑
n=1

R′′m,n

ε̄,ν̄

(3.32a)
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R1,n
ε̄,ν̄ =

(
n−1∏
s=1

(
yi,̂1,s

+ εi − ε̂̂1,s
− s + 1 + νi + ν̂̂1,s

)) ‖ε̄1,n,ν̄‖2 (3.32b)

εi = εi,1 + · · · + εi,N ε̂�̂ = ε1,�̂ + · · · + ε4,�̂

ε
1,n
i,̂ = ε

1,n
j1,̂

= ε
1,n
i,̂1,1

= · · · = ε
1,n
i,̂ 1,n

= 0 ε
1,n
j1,̂ 1,n

= 1

(the rest of ε
1,n

k,�̂
are as εk,�̂)

R2,n
ε̄,ν̄ = (

yj1,̂ + εj1 − ε̂̂ + νj1 + ν̂̂

)(n−1∏
s=1

(
yi,̂ 2,s

+ εi − ε̂̂2,s
− s + 1 + νi + ν̂̂ 2,s

)) ‖ε̄2,n,ν̄‖2

(3.32c)

ε
2,n
i,̂ = ε

2,n
j1,̂

= ε
2,n
j2,̂

= ε
2,n
i,̂2,1

= · · · = ε
2,n
i,̂ 2,n

= 0 ε
2,n
j2,̂ 2,n

= 1

(the rest of ε
2,n

k,�̂
are as εk,�̂)

R3,n
ε̄,ν̄ = (

yj1,̂ + εj1 − ε̂̂ + νj1 + ν̂̂

) (
yj2,̂ + εj2 − ε̂̂ + 1 + νj2 + ν̂̂

)
×
(

n−1∏
s=1

(
yi,̂ 3,s

+ εi − ε̂̂3,s
− s + 1 + νi + ν̂̂ 3,s

)) ‖ε̄3,n,ν̄‖2 (3.32d )

ε
3,n
i,̂ = ε

3,n
j1,̂

= ε
3,n
j2,̂

= ε
3,n
j3,̂

= ε
3,n
i,̂3,1

= · · · = ε
3,n
i,̂ 3,n

= 0 ε
3,n
j3,̂ 3,n

= 1

(the rest of ε
3,n

k,�̂
are as εk,�̂)

R′m,n

ε̄,ν̄ =


 ∏

1�j�4

∏
̂�m̂�N

(j,m̂) �=(i,̂ ),(km,̂ )

(
yjm̂ + ε′m

j − ε̂′
m̂ + ν ′

j + ν̃ ′m,n

m̂

)εjm̂




×
(

n−1∏
s=1

(
xi,k̂m,s

+ νi − ν̂k̂m,s
− s + 1

)) ‖0,ν̄′m,n‖2 (3.32e)

ε′m
j = εj,1 + · · · + εj,N − δji − δj,km

ε̂′
m̂ = ε1,m̂ + · · · + ε4,m̂ − 2δm̂,̂

ν ′
j = νj − δij ν̃ ′m,n

m̂ = ν̃m̂ − δm̂,k̂m,n

ν ′m,n

i,k̂m,1
= · · · = ν ′m,n

i,k̂m,n
= 0 ν ′m,n

km,k̂m,n
= 1

(the rest of ν ′m,n

k,�̂
are as νk,�̂)

R′′m,n

ε̄,ν̄′ =


 ∏

1�j�4

∏
̂�m̂�N

(j,m̂) �=(i,̂ ),(i,�̂m,n)

(
yjm̂ + ε′′m

j − ε̂′′
m̂ + ν ′′

j + ν̃ ′′m,n

m̂

)εjm̂




×
(

n−1∏
s=1

(
x�̂m,�̂m,s

+ ν�̂m
− ν̂�̂m,s

− s + 1
)) ‖0,ν̄′′m,n‖2 (3.32f )

ε′′m
j = εj,1 + · · · + εj,N − 2δji ε̂′′

m̂ = ε1,m̂ + · · · + ε4,m̂ − δm̂,̂ − δm̂,�̂m,n

ν ′′
j = νj − δj,�̂m

ν̃ ′′m,n

m̂ = ν̃m̂ − δm̂,�̂m,n
ν ′′m,n

�m,�̂m,1
= · · · = ν ′′m,n

�m,�̂m,n
= 0

ν ′′m,n

�m,̂ = 1 (the rest of ν ′′m,n

k,�̂
are as νk,�̂)
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The proof of this proposition is analogous to that of proposition 5, though more
complicated since there are three possible mechanisms of transmutations corresponding to
the three exceptional situations given. Thus, in the case described by (3.26), (3.27) the
transmutation is

ε̄,ν̄ = Y +
î . . . Y +

jm,̂ . . . Y +
i,̂m,n

. . . v0 −→ . . . Y +
jm,̂m,n

. . . v0. (3.33)

In the case described by (3.28), (3.29) the transmutation is

ε̄,ν̄ = Y +
î . . . Y +

km,̂ . . . X+
i,k̂m,n

. . . v0 −→ . . . X+
km,k̂m,n

. . . v0. (3.34)

In the case described by (3.30), (3.31) the transmutation is

ε̄,ν̄ = Y +
î . . . Y +

i,�̂m,n
. . . X+

�m,�̂m,n
. . . v0 −→ . . . X+

�m,̂ . . . v0. (3.35)

Note that for N = 1 only the cases described by (3.28), (3.29) are possible. Further we
proceed as for proposition 5.

Our final main result on the norms is

Proposition 7. If a state is not fully factorizable then the general expression of its norm is:

‖ε̄ν̄‖2 = Nε̄ν̄ − Rε̄ν̄ (3.36)

where Rε̄ν̄ designates the possible counterterms.

Proof. This follows from propositions 5 and 6. Consider first 0,ν̄′ from proposition 5. If it
is fully factorizable, then (3.36) follows at once. If it is not fully factorizable but factorizable
we first apply (3.16) one or more times until we are left with an unfactorizable state and
then we apply proposition 5 to the latter. We get another state which plays the role of 0,ν̄′.

Proceeding further like this we establish (3.36) at the end. Analogously we consider ε̄′,ν̄
from proposition 6 until we establish (3.36) for this case. �

The above enables us to show that the conditions of the theorem are sufficient for d > d−
11.

Indeed, in that caseNε̄ν̄ > 0 for all states. What turns out to be important for the unitarity is that
all counterterms are polynomials in d of lower degrees than Nε̄ν̄ and all positivity requirements
are determined by the terms Nε̄ν̄ . Unitarity at the reduction points will be considered in the
next section.

4. Unitarity at the reduction points

4.1. The first reduction point

In this section we consider the unitarity of the irreps at the reducibility points d−
i1. Unitarity is

established by noting that there are no negative norm states and by factoring out the zero norm
states which are a typical feature of the Verma modules V � at the reducibility points. These
zero norm states generate invariant submodules Ii1 and are decoupled in the factor modules
V �/Ii1 which realize the UIRs at the points d = d−

i1.
In this subsection d = d−

11, i.e. x11 = 3. We have the following:

Proposition 8. Let d = d−
11. There are no negative norm states. The zero norm states are

described as follows. In the case ak̂ �= 0, k̂ = 1, . . . , N , the states of zero norm F�
0 from F�

are given by ε̄ν̄ with

εî = 0, 1, νî =
{

1 ̂ = 1
0, 1 otherwise.

(4.1)
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The number of such states is 28N−4 and the number of oddly generated states in the reduced
irrep L� ≡ F�

/F�
0 is 15 × 28N−4.

In the cases a1 = · · · = ak̂ = 0, k̂ = 1, . . . , N − 1, in addition to those in (4.1) the
following states have zero norm:

εî = 0, 1,

νî =



1 ̂ = 2
0 i = ̂ = 1
0, 1 otherwise

(4.2.1)

and

νî =



1 ̂ = 3
0 i = 1, ̂ = 1, 2
0, 1 otherwise

(4.2.2)

· · ·

νî =



1 ̂ = k̂ + 1
0 i = 1, ̂ = 1, . . . , k̂

0, 1 otherwise.
(4.2.k̃)

The number of states in (4.2.1), (4.2.2), . . . , (4.2.k̃) is 28N−5, 28N−6, . . . , 28N−4−k̃, resp., the
overall number of states in (4.2) is 28N−4−k̃(2k̃ − 1), the number of states in the reduced L� -
factoring out both (4.1) and (4.2) - is 28N−4−k̃ (24+k̃ − 2k̃+1 + 1).

In the case r1 = 0 (R-symmetry scalars) in addition to those in (4.1) and (4.2) for
k̂ = N − 1, the following states have zero norm:

εî =



1 ̂ = 1
0 i = 1, ̂ > 1
0, 1 otherwise

νî =



0 ̂ = 1
0 i = 1
0, 1 otherwise

(4.3.1)

and

εî =



1 ̂ = 2
0 i = 1, ̂ > 2
0, 1 otherwise

νî =



0 ̂ = 2
0 i = 1
0, 1 otherwise

(4.3.2)

· · ·

εî =



1 ̂ = N − 1
0 i = 1, ̂ = N

0, 1 otherwise

νî =



0 ̂ = N − 1
0 i = 1
0, 1 otherwise

(4.3.N − 1)
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εî =
{

1 ̂ = N

0, 1 otherwise

νî =



0 ̂ = N

0 i = 1
0, 1 otherwise.

(4.3.N)

The number of states in (4.3.1), (4.3.2), . . . , (4.3.N − 1), (4.3.N) is 26N−6,

26N−5, . . . , 27N−8, 27N−7, resp., the overall number of states in (4.3) is 26N−6(2N − 1), the
number of states in the reduced L�—factoring out (4.1), (4.2) ( for k̃ = N − 1) and (4.3)—is
26N−6(22N+6 − (2N+3 + 1)(2N − 1)).

Proof. There are no negative norm states if d > d−
11 and thus there are no such states for

d = d−
11 by continuity. For the zero norm states we start with the case ak̂ �= 0, k̂ = 1, . . . , N .

Inspecting formula (3.21) we see that the fully factorized states of zero norm have the form
(4.1). Indeed, the only factor in Nε̄ν̄ that can be zero is (x11 + ν̃11) = (3 + ν̃11) (hence
ν11 = 1), which happens if ν̃11 = −3 which happens if νi1 = 1, i = 2, 3, 4. (In general,
(xî + ν̃î ) � (3 + ν̃î ) � (i + ̂ − 2).) Further, the problem is reduced to unfactorizable states.
The main term of the norm squared is given again by Nε̄ν̄ which is zero. For further use we
note more explicitly that for the states from (4.1) we have

Nε̄ν̄ ∼ (x11 − 3)(x21 − 2)(x31 − 1)x41. (4.4)

Now we shall show that the counterterms are also zero. For this it is enough to show that
ν

m,n
i1 = 1, i = 1, 2, 3, 4 in all auxiliary states that happen in the counterterms. Consider first

states starting with X+
î for which the norm is given in proposition 6. The only way ν

m,n
i1 could

differ from νi1 is if one of the pairs in (3.22) is of the form (km, 1), more precisely, that could
be only one of the pairs (km, k̂m,q(m)) = (km, 1). But then according to (3.23) for any possible
m we should have νi,1 = 1 and νkm,1 = 0 which does not hold. Thus, all counterterms are also
zero. Consider next states starting with Y +

î for which the norm is given in proposition 7. Here
only the counterterms in (3.32e, f ) can possibly be non-zero. For the counterterm in (3.32e)
the only way ν ′m,n

i1 could differ from νi1 is if one of the pairs in (3.28) is of the form (km, 1),
more precisely, that could be only one of the pairs (km, �̃m,q ′(m)) = (km, 1). But then according
to (3.29) for any possible m we should have νi,1 = 1 and νkm,1 = 0 which does not hold. For
the counterterm in (3.32f ) the considerations are simpler since it is immediately seen from
(3.30) that there is no pair that can affect νi,1 since all �̃m,n > ̂ � 1, and if we consider ̂ = 1
then our state does not fulfil the condition in (3.31) ν�m,1 = 0. Thus, all possible counterterms
are zero and thus all states in (4.1) have zero norm. We continue with the cases ak̂ �= 0,
k̂ = 1, . . . , N − 1. Then x1,k̂+1 = · · · = x12 = x11 = 3. Under the hypothesis in (4.2.1)
we have ν̃12 = −3, hence x12 + ν̃12 = 0 and the corresponding states have zero norm—the
argument for unfactorizable states goes analogously to above. The same reasoning goes for
all other cases in (4.2). For further use we note more explicitly that for the states from (4.2.�̂),
�̂ = 1, 2, . . . , k̂, we have

Nε̄ν̄ ∼ (x1,�̂+1 − 3)(x2,�̂+1 − 2)(x3,�̂+1 − 1)x4,�̂+1. (4.5)

We continue with the case r1 = 0. Then y1,N = · · · = y11 = x11 = 3. Under the hypothesis
in (4.3.1) we have ε̃11 = −3, hence y11 + ν̃11 = 0 and the corresponding states have zero
norm—the argument for unfactorizable states goes analogously to above. The same reasoning
goes for all other cases in (4.3). For further use we note more explicitly that for the states
from (4.3.�̂), �̂ = 1, 2, . . . , N , we have

Nε̄ν̄ ∼ (y1,�̂ − 3)(y2,�̂ − 2)(y3,�̂ − 1)y4,�̂. (4.6)

The counting of states is straightforward. �
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4.2. The other reduction points

We first consider the case (3.8b) of the theorem: d = d−
21 and n1 = 0, i.e. x11 = x21 = 2. We

have the following:

Proposition 9. Let d = d−
21 and n1 = 0. There are no negative norm states. All states

of zero norm which are described in proposition 8 have zero norm also under the present
hypothesis. There are further states of zero norm which are described as follows. In the case
ak̂ �= 0, k̂ = 1, . . . , N , the additional states of zero norm are given by ε̄ν̄ with:

εî = 0, 1 ν11 + ν21 + ν31 + ν41 = 3 νî = 0, 1 ̂ �= 1. (4.7)

The number of states in (4.7) is 28N−2, and the number of states in the reduced L�—factoring
out both (4.1) and (4.7)—is 11 × 28N−4.

In the case a1 = 0 in addition to those in (4.7) the following states have zero norm for
N = 1:

εi1 = 1 ν11 = 0 ν21 + ν31 + ν41 = 1 (4.8a)

and

ε11 + ε21 + ε31 + ε41 = 3 νi1 = 0. (4.8b)

The number of states in (4.8a), (4.8b), is 3, 4, resp. the overall number of zero states—
including (4.1), (4.3), (4.7), and (4.8)—is 88, and thus the number of states of the reduced L�

is 168.

Proof. We first have to show that the states of zero norm from proposition 8 have zero norm
also here. With this we shall also establish that there are no negative norm states since those
states are the only suspects for this. For the cases described by (4.1) this follows by inspecting
(4.4) which is zero also here. In the cases described by (4.2�̂), (4.3�̂) this follows by inspecting
(4.5), (4.6), which are zero also here. Further, the proof is as of proposition 8. In particular,
for the states from (4.7) we have

Nε̄ν̄ ∼ (
xi1,1 − 2

)(
xi2,1 − 1

)
xi3,1 (4.9)

where ij are from the set 1, 2, 3, 4, and thus at least one of them is equal to 1 or 2, hence the
RHS of (4.9) is zero. Analogously, for the states from (4.8a) holds (4.6) for �̂ = 1, hence
Nε̄ν̄ = 0. For the states from (4.8b) holds:

Nε̄ν̄ ∼ (
yi1,1 − 2

)(
yi2,1 − 1

)
yi3,1 (4.10)

which is zero as (4.9) since yi1 = xi1 for a1 = 0. �

Next we consider the case (3.8c) of the theorem: d = d−
31 and n1 = n2 = 0, i.e.

x11 = x21 = x31 = 1. We have the following:

Proposition 10. Let d = d−
31 and n1 = n2 = 0. There are no negative norm states. All

states of zero norm which are described in propositions 8 and 9 have zero norm also under
the present hypothesis. There are further states of zero norm which are described as follows.
In the case ak̂ �= 0, k̂ = 1, . . . , N , the additional states of zero norm are given by ε̄ν̄ with

εî = 0, 1 ν11 + ν21 + ν31 + ν41 = 2. (4.11)

The number of states in (4.11) is 3 × 28N−3, and the number of states in the reduced L�—
factoring out (4.1), (4.7) and (4.11)—is 5 × 28N−4.
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In the case a1 = 0 in addition to those in (4.11) the following states have zero norm for
N = 1:

εi1 = 1 νi1 = δi1 and ε11 + ε21 + ε31 + ε41 = 3 ν11 + ν21 + ν31 + ν41 = 1

(4.12a)
ε11 = 1 ⇒ ν11 = 0 ε11 = 0 ⇒ ν21 = 0 (4.12b)

and

ε11 + ε21 + ε31 + ε41 = 2 νi1 = 0. (4.12c)

The number of states in (4.12a), (4.12b), (4.12c), is 1, 12, 6, resp., the overall number of zero
states—including (4.1), (4.3), (4.7), (4.8), (4.11), (4.12)—is 203, and thus the number of states
of the reduced L� is 53.

Proof. We first have to show that the states of zero norm from propositions 8 and 9 have zero
norm also here (establishing also the lack of negative norm states). For the cases described
by (4.1), (4.2�̂), (4.3�̂), (4.7) (4.8) this follows by inspecting (4.4), (4.5), (4.6), (4.9), (4.10),
which are zero also here. Further, the proof is as of propositions 8 and 9. In particular, for the
states from (4.11) we have

Nε̄ν̄ ∼ (
xi1,1 − 1

)
xi2,1 (4.13)

where ij are from the set 1, 2, 3, 4, and thus at least one of them is equal to 1 or 2 or 3, hence
the rhs of (4.13) is zero. For the states from (4.12a), resp. (4.12b), hold (4.6) for �̂ = 1, resp.
(4.10), hence Nε̄ν̄ = 0. For the states from (4.12c) we have

Nε̄ν̄ ∼ (
yi1,1 − 1

)
yi2,1 (4.14)

which is zero as (4.13) since yi1 = xi1 for a1 = 0. �

Finally we consider the case (3.8d ) of the theorem: d = d−
41 and n1 = n2 = n3 = 0, i.e.

x11 = x21 = x31 = x41 = 0. We have the following:

Proposition 11. Let d = d−
41 and n1 = n2 = n3 = 0. There are no negative norm states. All

states of zero norm which are described in propositions 8, 9 and 10 have zero norm also under
the present hypothesis. There are further states of zero norm which are described as follows.
In the case ak̂ �= 0, k̂ = 1, . . . , N , the additional states of zero norm are given by ε̄ν̄ with

εî = 0, 1 ν11 + ν21 + ν31 + ν41 = 1 νî = 0, 1 ̂ �= 1. (4.15)

The number of states in (4.15) is 28N−2, and the number of states in the reduced L�—factoring
out (4.1), (4.7), (4.11) and (4.15)—is 28N−4.

In the case a1 = 0 in addition to those in (4.15) the following states have zero norm for
N = 1:

ε11 + ε21 + ε31 + ε41 = 1 νi1 = 0. (4.16)

The number of states in (4.16) is 4, the overall number of zero states—including (4.1), (4.3),
(4.7), (4.8), (4.11), (4.12), (4.15), (4.16)—is 28 −1 and thus the number of states of the reduced
L� is 1, i.e. this is the trivial representation.

Proof. We first have to show that the states of zero norm from propositions 8, 9 and 10 have
zero norm also here (establishing also the lack of negative norm states). This is clear since
in all cases the factor Nε̄ν̄ contains as multiplicative factor some xi1 and hence is zero. The
same holds for the states from (4.15). For N = 1 and a1 �= 0 there are 16 states which are of
the form ε̄,0. For a1 = 0 all these, beside the vacuum state, are of zero norm since the factor
Nε̄,0 contains as multiplicative factor some yi1 = xy1 = 0. For the counting of states we have
to note that the 16 states in (4.8a) and (4.12a, b) are contained also in (4.15) if a1 = 0. �
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5. Outlook

In the previous subsection we gave the counting of states in the cases ak̂ �= 0, k̂ = 1, . . . , N ,
only for N = 1. That would have taken many more pages due to the complicated combinatorics
for N > 1 when ak̂ = 0, and is left to a subsequent paper.

We also plan to construct the positive energy UIRs for D = 3, 5 conformal supersymmetry
taking up the corresponding conjectures of Minwalla [43]. Other interesting objects are the
conformal superalgebras for D > 6 recently introduced in [50].
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